Bergman Metrics and Geodesics in the Space of Kähler Metrics on Toric Varieties

نویسنده

  • JIAN SONG
چکیده

Geodesics on the infinite dimensional symmetric space H of Kähler metrics in a fixed Kähler class on a projective Kähler manifold X are solutions of a homogeneous complex Monge-Ampère equation in X×A, where A ⊂ C is an annulus. They are analogues of 1PS (one-parameter subgroups) on symmetric spaces GC/G. Donaldson, Arezzo-Tian and Phong-Sturm raised the question whether Monge-Ampère geodesics can be approximated by 1PS geodesics in the symmetric spaces of Bergman metrics. Phong-Sturm proved weak C convergence of Bergman to Monge-Ampère geodesics on a general Kähler manifold. In this article we prove convergence in C2(A×X) in the case of toric Kähler metrics, extending our earlier result on CP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bergman Approximations of Harmonic Maps into the Space of Kähler Metrics on Toric Varieties

We generalize the results of Song-Zelditch on geodesics in spaces of Kähler metrics on toric varieties to harmonic maps of any compact Riemannian manifold with boundary into the space of Kähler metrics on a toric variety. We show that the harmonic map equation can always be solved and that such maps may be approximated in the C topology by harmonic maps into the spaces of Bergman metrics. In pa...

متن کامل

Convergence of Bergman geodesics on CP1

This article is concerned with geodesics in spaces of Hermitian metrics of positive curvature on an ample line bundle L → X over a Kähler manifold. Stimulated by a recent article of Phong-Sturm [PS], we study the convergence as N → ∞ of geodesics on the finite dimensional symmetric spaces HN of Bergman metrics of ‘height N ’ to Monge-Ampére geodesics on the full infinite dimensional symmetric s...

متن کامل

Convergence of Bergman Geodesics on Cp 1 1

This article is concerned with geodesics in spaces of Hermitian metrics of positive curvature on an ample line bundle L → X over a Kähler manifold. Stimulated by a recent article of Phong-Sturm [PS], we study the convergence as N → ∞ of geodesics on the finite dimensional symmetric spaces HN of Bergman metrics of ‘height N ’ to Monge-Ampére geodesics on the full infinite dimensional symmetric s...

متن کامل

Infinite geodesic rays in the space of Kähler potentials

It has been shown by Mabuchi ([18]), Semmes ([20]) and Donaldson ([11]) that the space of Kähler metrics cohomologous to a fixed one has a riemannian structure of infinite dimensional symmetric space of negative curvature. Being its dimension not finite, the usual properties about existence, uniqueness and regularity for geodesics do not hold a priori. They appear crucial in a number of applica...

متن کامل

Probability Measures Associated to Geodesics in the Space of Kähler Metrics

We associate certain probability measures on R to geodesics in the space HL of positively curved metrics on a line bundle L, and to geodesics in the finite dimensional symmetric space of hermitian norms on H(X, kL). We prove that the measures associated to the finite dimensional spaces converge weakly to the measures related to geodesics in HL as k goes to infinity. The convergence of second or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007